金磊 发自 量子位
中国芯片,再添一股新势力——
国内首款存算一体智驾芯片,正式发布!
(资料图)
这款12nm芯片名叫鸿途™H30,从性能表现上来看,在功耗仅为35W的情况下,最高物理算力可达256TOPS。
概括来说,就是芯片性能提升了2倍以上,但功耗却减少了超50%。
这一点,以Resnet50性能功耗为例,与国际芯片巨头英伟达主流产品做对比即可一目了然。
不过有一说一,除了“国内首款存算一体智驾芯片”之外,围绕鸿途™H30所体现的“业界第一”还不仅于此。
它的问世也成为了存算一体大算力芯片在国内的首次工程化落地。
而打造鸿途™H30背后的公司后摩智能(下文简称后摩),其自身也拥有着一个“业界第一”的标签——
国内首家存算一体大算力AI芯片公司。
更重要的是,以上种种的成绩,后摩是从自2020年底成立至今,仅仅花费2年多的时间“解锁”。
如此速度和效能之下,也令活动现场掌声不断。
不只是一颗芯片这么简单
我们进一步再来深入了解一下这款存算一体架构芯片。
许多了解芯片的小伙伴在看到“256TOPS”时,就会产生疑问:市面上不是已经有很多能够达到这个算力值的芯片了吗?
我们需要注意的是,鸿途™H30亮出来的是物理算力,并非是市面上常说的稀疏虚拟算力。
这也就意味着它一举成为了国产智驾芯片里物理算力最大的那一个。
更难能可贵的是,在拿下最大算力的同时,功耗正如我们刚才提到的,仅为35W。
如此看下来,芯片的能效比便是几倍于同类的产品了。
除此之外,在活动现场,后摩对鸿途™H30更多的细节参数做了展示:
12nm工艺
支持外扩Memory,宽带达128GB/s
支持16路FHD Encoder/Decoder
支持PCIe 4.0,x8,x4,x2,RC&EP mode
……
性能指标方面,鸿途™H30与英伟达产品相比,在Resnet50 Batch=1和Batch=8上,分别达到了5.7倍和2.3倍。
计算效率方面,鸿途™H30更是拿下了11.3倍和4.6倍的成绩!
那么具备如此高性能存算IP,如何能将其利用到位,便涉及到AI处理器架构和设计的问题了。
而在活动现场,后摩也是将其背后的架构设计毫无保留地展示了出来——IPU(Intelligence Processing Unit)。
从整体来看,后摩在架构设计上的规划采用了“三步走”的策略。
首先便是第一代IPU天枢架构,这是专门为自动驾驶所打造的IPU,而刚才我们提到的鸿途™H30正是基于此。
谈到这个架构是如何设计出来的,就不得不先提一下以往芯片的设计架构。
例如特斯拉FSD的集中式计算,就是非常典型的通过堆积大量计算资源来提高性能。
它就像是一个四合院,院子里啥都有,主人们在院子里可以尽情沟通交流,但问题也非常明显,就是四合院的面积就只有那么大,居住者数量就是有限的。
后来也有人提出了分布式计算的方法,把算力很大的核拆分成若干个小核;这些小核可以独立完成小任务,也可以共同完成大任务。
这种方式像是现代高层公寓,每层楼都有独立的基础生活功能,也可以方便复制和扩展;但问题是每层楼之间的沟通比较困难。
因此,后摩智能的天枢架构所采用的便是二合一的思路——结合古典中式建筑和现代高层建筑。
简单来说,每个芯片都包含4个IPU核;每个IPU核又有4个Tile;而每个Tile内部还有CPU、张量引擎、特殊功能单元、矢量处理器和多通道DMA等。
这样的架构使得AI计算不但不用在多个处理器(例如CPU,GPU,DSP)之间分配任务,甚至不用出AI核,就可以高效的完成全部端到端的计算。
这种架构还可以说是像一个综合办事大楼,走进去,一站式完成各种业务,大幅提高了效率。
总结来说,天枢架构的特点之一就是多核/多硬件线程实现计算效率与算力灵活扩展的平衡。
除此之外,它还可以摆脱系统总线的桎梏,其双环拓扑专用总线可以实现灵活的数据直传。
就像在多层空中四合院之间,建了个直接入户的电梯,可以快速做到传输。
至于后摩在未来要进一步研发的天璇架构和天玑架构,则将聚焦在扩大模型应用边界和通用人工智能。
在现场,后摩也展示了搭载鸿途™H30后无人小车上路的实测。
但如果你觉得后摩仅仅是拿出来了一块芯片,那就有点too simple了些。
在如此短促的研发时间里,它还一口气发布了力驭®域控制器和后摩大道™软件平台。
力驭是后摩面向智能驾驶市场的大算力域控制器产品,据悉,只需要搭载单颗鸿途™H30,便可以满足智能驾驶多种传感器、从L2到L4所有AI计算的需求。
最后,还有一个后摩大道™软件平台,是为鸿途™H30芯片产品开发的AI软件开发平台。
它的作用便是可以让客户在使用后摩存算一体架构产品时,能够将开发、调试和部署应用的效率大幅提高。
△注:后摩智能BEV模型实测
以上便是后摩第一次正式亮相所给出的主要“作业”了。
通过各种数据和效果的对比展示,其在大算力国产智驾芯片的实力可见一斑。
但更令人惊叹的,还应当属“后摩速度”——一切都在2年多时间完成。
如何在2年时间“炼”成的?
不同于美国创业公司从车库、大学宿舍开始的那般浪漫与理想,后摩的创业起点非常出乎人们的意料——沙县小吃。
没错,正是在这种享受馄饨与热汤之际,几个人一拍即合,决定创业搞AI芯片。
不过赛道锁定在芯片,除了大环境的因素之外,也与小伙伴们每个人都向往“万物智能”的生活相关。
例如有人家住得特别远,若是自动驾驶成熟了,便可以边通勤边办公;还有人非常顾家,希望有个机器人把家务全包了……
那么问题来了,到底什么样的芯片才能做到无处不在、让万物实现智能?
极致的效率,毋庸置疑是非常关键的因素之一。
然而当时后摩的初创团队从科技发展历史看清的一个事实是,每1000倍的效率提升将造就一个计算时代。
若是想要达到他们理想的万物智能世界,那么算力起码也得是现今芯片计算效能的1000倍。
加之摩尔定律的逐步失效,他们便将目光聚焦到了另一种打法——换架构,搞存算一体。
团队坚定认为,这就是后摩尔时代下的破局之道:
算力得大,功耗要低,面积要小,成本还得廉。
以至于CEO吴强在现场这般回忆道:
(虽然也有人会打电话问是不是做摩托车的……)
不过讲真,存算一体这个技术在两三年前并没有像现在这般火爆。
可以说后摩成为了最早一批尝到红利的公司,也顺理成章地使其成了国内第一个搞存算一体大算力AI芯片的公司。
而之所以会将第一个落地场景放到自动驾驶,用吴强的话来说就是,“自动驾驶是万物智能美好生活的重要组成部分,人们几乎在花1/8清醒时间在开车”。
并且自动驾驶作为“集AI技术大成者”的领域,能啃下这块硬骨头,那么再拓展到其它领域也就会轻松很多。
赛道、方向、技术,在创业初期三大最重要的关键因素定下来之后,接下来就是进入更煎熬的研发阶段了。
虽说是煎熬阶段,但有一说一,对于后摩团队来说,或许都已经是驾轻就熟的事情,因为公司聚集了一帮芯片“老手”。
例如创始人吴强,博士毕业于普林斯顿大学计算机博士学位,研究方向正是高能效比计算芯片及编译器。
毕业之后,他还先后工作于Intel、AMD、Facebook等国外知名企业;值得一提的是,在AMD期间曾担任GPGPU/OpenCL创始团队核心成员。
吴强不仅拥有国外的工作经验,在2017年回国之后,也是在国内AI知名独角兽企业担任技术副总裁和CTO等职务。
在学术方面,吴强曾获第38届计算机体系架构顶会MICRO-38 唯一的一个最佳论文奖;科研成果被美国业内杂志IEEE Micro 评选为年度最有影响的12 个科技成果之一。
△后摩智能创始人兼CEO,吴强
再如后摩智能联合创始人、芯片研发副总裁陈亮,本硕博毕业于清华大学,曾任海思CPU芯片资深架构师、地平线AI芯片首席架构师。
在做产品上,后摩联合创始人、产品副总裁信晓旭,具有15年以上计算芯片产品、市场和销售经验,曾任海思计算芯片产品总监。
△左:陈亮;右:信晓旭
而从后摩整体研发团队构成来看,硕、博士占比70%以上;核心成员均主导过多颗世界级芯片的设计量产,类别涵盖GPU、CPU、高性能车规级AI芯片等。
更重要的是,用吴强自己的话来说,后摩的研发团队人员都是非常纯粹的人,肯吃苦、够努力。
如此来看,也就不难理解为什么能够在2年多的时间里,将存算一体芯片从0到1开花结果了。
芯片的“后摩时刻”已至
虽然芯片产品已经发布、量产,但最后我们还需要对一个问题做深入的探讨——存算一体,是否真的是正确的方向。
要回答这个问题,我们还需先得知道芯片算力的发展出了什么问题。
无论是计算机、手机,还是智能手环等产品,它们内部程序运行机制都绕不开一个著名的计算体系,冯·诺依曼体系结构。
它的一个特点,就是计算和存储是分离的。
若是通俗一点理解,我们可以将这个过程视为在厨房炒菜:
存储器:相当于厨房里的冰箱;
数据:相当于冰箱里的菜;
计算器:相当于洗菜、切菜和炒菜。
那么要完成一道菜,就需要先从冰箱里把菜取出来,再去厨房里洗、切、炒。
那么问题来了,这些菜需要在存储器和计算器之间疯狂地做搬运工作,这就无形之间产生了巨大的时间开销,
若是对于较低的计算量来说,冯·诺依曼体系结构尚且还可处理,但谁能想到,在信息数据量爆炸的当下,人们对算力的需求会变得如此之大。
举个例子,若是用全卷积网络处理一张分辨率为224x224大约5万像素的图片,需要的计算量为5x109次的计算。
这个任务若是放在一个CPU核心上处理,需要足足3秒钟的时间,慢,着实太慢!
单单是这么简单的任务尚是如此,近年来随着AIGC热潮的到来,大模型成为了产学界的香饽饽,而动辄需要对上千亿参数做训练推理,需要的算力之大可见一斑。
即便现代很多芯片开始设计更复杂的多级存储结构,例如把SRAM(静态随机存储器)作为距离计算单元最近的缓存,保证最高的读写速度,但容量还是非常的有限。
例如在下图英伟达GA102 GPU中,蓝色方块区域便是缓存区域,即便看上去占了不少空间,但其实容量也就6MB而已。
这在当今主流AI任务面前,简直是大巫见小巫了。
这,就是当下算力发展所遇到的致命瓶颈。
而且就过去二十年的发展来看,处理器性能以每年大约55%的速度提升,但内存性能的提升速度每年只有10%左右。
存储速度长期滞后于计算速度,因此就导致了芯片性能难以满足AI需求的情况。
不仅如此,近年来“摩尔定律即将失效”的声音也是此起彼伏,很多人认为传统的芯片无法再胜任新的大算力任务了。
虽然业界在后来提出了GPU、多核CPU等解决方案,但依旧是无法绕开冯·诺依曼体系结构最为致命的瓶颈问题。
在如此情况之下,业界便提出了更为大胆的想法——干脆把冰箱和厨房搞到一起,让取菜、洗菜、切菜和炒菜都在一个空间里完成——即,存算一体。
对应到芯片设计,就意味着把分开的计算单元和SRAM单元重新设计,把乘加单元打散并插入到SRAM阵列当中,以此形成新的存算单元。
如此一来,每个存算单元既保留了SRAM本身的规则性,便于高速读写;又扩充了并行计算功能,实现高能效计算。
以后摩发布的鸿途™H30为例,在存算一体架构之下,便可以在每秒计算超过4x1012次。
和其它AI芯片相比,后摩存算一体的宏单元在同样能耗下提供的算力,可以直接飙升10倍!
但其实存算一体技术早在2011年就引起学术界关注,而后在2016-2017年成为学术界热议的话题。
到2019年逐渐开始受到工业界和资本的关注,彼时大家的讨论主要集中在这项技术的可靠性上。
从2020年开始,越来越多的玩家进入这个市场,并且大公司都开始在存内计算上发力,此时的存内计算已成为产业界“不得不跟进”的技术之一,大家的讨论聚焦在存内计算未来的市场空间上。
再从市场规模角度来看,量子位在《存算一体芯片深度产业报告》中曾经预测:
由此可见,不论是从技术亦或是市场的发展和预测来看,存算一体确实是解决算力瓶颈的一大利器。
而作为率先入局的后摩智能,也给出了自己的观点:
至此,对于芯片算力的瓶颈,后摩智能已经给出了自己的一套打法,并且已经交出了一份高分作业。
站在现今后摩尔时代的当下,或许芯片的“后摩时刻”已经到来。
-
自主造芯新突破:256TOPS算力刷新国产性能榜,功耗低至35W,首个存算一体智驾芯片两年交卷金磊发自 量子位中国芯片,再添一股新势力——国内首款存算一体智驾芯片,正式发布!这款12nm芯片名叫鸿途
-
热点!阔腿裤不算什么,今年“卡布里裤”才算时髦,遮肉显瘦,还很洋气穿搭进修,是一个量变到质变的过程,经过日积月累的学习和打磨,循序渐进,慢慢就得到收获,形成了属于自己
-
qq桥牌游戏大厅_桥牌游戏在线玩|全球讯息1、定约桥牌现代桥牌被称为定约桥牌,是由一种叫“惠斯特”的纸牌游戏发展来的。2、与其他游戏相比,桥牌有
-
世界热点!信诚货币基金官网-信诚基金是大公司吗本文内容是由小编为大家搜集关于信诚货币基金官网,以及信诚基金是大公司吗的资料,整理后发布的内容,让我
-
当前短讯!模组电源和非模组电源有什么区别-模组电源和非模组区别1、①外观上不同非模组电源从内部引出一大堆供电线,模组电源则是用模组接口板代替。2、拆开电源后,可以看
X 关闭
X 关闭